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Problem Definition
Goal: Capture the pose of real animals using synthetic
training examples, without using any manual annota-
tions. In order to support the study how neural circuits
orchestrate behavior.

Key Contributions:
• An efficient model that generates both realistic appear-

ances and accurate annotations from simple synthetic
animal models.

• Explicit and independent modeling of appearance,
shape and pose in an unpaired image translation
framework.

• Introducing a pixel-wise deformation module that
overcomes large structure difference across domains.

Related Works
Unpaired image translation
• Style Transfer based methods keep the pose un-

changed fail to generate realistic appearances.

• cycleGAN based methods generate realistic appear-
ances fail to keep the pose when source and target do-
main have large structural differences.

• Our proposed method can generate realistic images
together with accurate annotations.

Experiments: image translation
Dataset overview
• Samples of synthetic and real data. We focus on

three animals with large discrepancy in appearance,
shape and pose.

Annotation transfer
• Annotations can be transferred from source to target

domain by learned deformation field.

Results
• Qualitative comparison. Our methods can generate

realistic images with accurate annotations in target do-
main

• Structured similarity (SSIM) comparison.

Task D.M. C.E. D.E.
Fast-Style-Transfer 0.3932 0.0539 0.6385
Cycle-GAN 0.6543 0.9034 0.8504
Gc-GAN 0.6392 0.8915 0.8586
Ours 0.6746 0.9076 0.8771

Experiments: pose estimation
Qualitative results
• The estimator provides close to fully-supervised re-

sults across all three animals.

Quantitative results
• Pose estimation accuracy
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• Pose estimation results for Drosophila:

Task D.M. C.E. D.E.
Fast-Style-Transfer 0.3932 0.0539 0.6385
Cycle-GAN 0.6543 0.9034 0.8504
Gc-GAN 0.6392 0.8915 0.8586
Ours 0.6746 0.9076 0.8771

Table 1. Structured similarity (SSIM) comparison. The explicit
modeling of deformation outperforms baselines, particularly on
the complex Drosophila images showing complex poses.

Baselines. We compare to Fast-Style-Transfer [7], which
combines [10, 20, 48], Cycle-GAN [62] and Gc-GAN [8].
With the latter being a state-of-the-art method for image to
image translation and the former used to validate that sim-
pler solutions do not succeed.

We compare pose estimation with the same architecture,
trained directly on the synthetic images, images generated
by the above mentioned methods, and on manual annota-
tions of real training images (185 for Drosophila, 100 for
worm, and 100 for fish). To also compare to domain adapta-
tion methods, we adopt the pipeline of ADDA [47] for pose
estimation. The original ADDA [47] transfers domains in a
vector feature space. Instead, we use the hourglass network
for feature extraction, replacing the vector space into spatial
feature maps which preserves the spatial pose information.
The supplemental document provides additional details.

4.1. Quality of Unpaired Image Translation

The quality of Cycle and Gc-GAN is comparable to ours
on the simple worm and fish domains, as reflected visually
in Fig. 7 and quantitatively in terms of SSIM in Table 1.
For Drosophila, our method improves image quality (0.67
vs. 0.39, 0.63 and 0.65). Albeit the core of explicit de-
formation was to transfer pose annotations across domains,
this analysis shows that an explicit mapping and incorpo-
ration of silhouettes regularizes and leads to improved re-
sults. For instance, it ensures that thin legs of the fly are
completely reconstructed and that exactly six legs are syn-
thesized, while Cycle-GAN and Gc-GAN hallucinate addi-
tional partial limbs.

4.2. Pose Domain Transformation

Fig. 8 shows that our method faithfully transfers 2D key-
points, obtained for free on synthetic characters, to the tar-
get domain. The transferred head and tail keypoints on the
worm and fish correspond precisely to the respective loca-
tions in the synthesized images, despite having a different
position and constellation in the source. This transfer works
equally well for the more complex Drosophila case. Only
occasional failures happen, such as when a leg is behind or
in front of the torso, rendering it invisible in the silhouette.
Moreover, the eyes of the fish are not well represented in the
silhouette and therefore sometimes missed by our silhouette
deformation approach.

ecruoS
elcyC

NAG
sruO

Figure 8. Automatic Pose Annotation. Our method faithfully
transfers poses across domains, while Cycle-GAN, the best per-
forming baseline, loses correspondence on all three datasets.
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Figure 9. Pose estimation accuracy. The accumulated error
curves show the accuracy (vertical axis) for different PCK thresh-
olds (horizontal axis). Our method clearly outperforms the base-
lines and approaches the manually supervised reference.

Drosophila Melanogaster

Metric
PI-PCK ↑
(5 pix)

PI-PCK ↑
(15 pix)

PI-AUC ↑
(4-45 pix)

PI-RMSE ↓
(pix)

Synthetic 19.8 67.9 75.75 13.456
Fast-Style-Transfer 15.4 57.6 68.9 17.309
Gc-GAN 11.9 68.7 76.3 13.175
Cycle-GAN 15.0 72.9 78.4 12.302
Ours 40.0 84.7 86.0 8.823
Supervised 72.2 88.8 90.35 6.507

Table 2. Pose estimation accuracy comparison on Drosophila
Melanogaster. A similar improvement as for Drosophila is at-
tained on the other tested laboratory animals, with a particularly
big improvements on the zebrafish.

By contrast, existing solutions capture the shape shift be-
tween the two domains, but only implicitly, thereby loosing
the correspondence. Poses that are transferred one-to-one
from the source do no longer match with the keypoint lo-
cation in the image. Keypoints are shifted outside of the
body, see last column of Fig. 8. The style transfer maintains
the pose of the source, however, an appearance domain mis-
match remains. We show in the next section that all of the
above artifacts lead to reduced accuracy on the downstream
task of pose estimation.

• Pose estimation results for C.elegans and D. rerio:
Caenorhabditis elegans Danio rerio

Metric
PI-PCK ↑
(5 pix)

PI-AUC ↑
(2-20 pix)

PI-RMSE ↓
(pix)

PCK ↑
(10 pix)

AUC ↑
(2-20 pix)

RMSE ↓
(pix)

Synthetic 0.0 0.9 67.29 29.3 37.4 20.15
Fast-Style-Transfer 3.1 25.0 20.50 15.6 20.8 19.25
Gc-GAN 9.7 25.0 27.38 68.2 54.5 27.38
Cycle-GAN 45.3 63.2 14.71 68.7 59.1 9.70
Ours 90.3 87.6 5.36 93.9 83.1 4.50
Supervised 94.6 92.3 3.77 99.6 86.5 3.91

Table 3. Pose estimation accuracy on C. elegans and D. rerio.
Our method significantly outperforms all baselines and approaches
the supervised baseline. Units are given in round brackets.
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Figure 10. Qualitative pose estimation results. The estimator
provides decent results across all three animals. Occasional fail-
ures (last two rows) happen when legs cross, at occlusions, and for
the fine fish tail. Training on Cycle-GAN images does not succeed.

4.3. 2D Pose Estimation

The primary objective of this study is to demonstrate ac-
curate keypoint detection on a target domain for which only
annotations on synthetic images with different shape and
pose exist. Fig. 10 shows qualitative results. We compare
the performance of the same keypoint detector trained on
images and keypoints generated by ours and the baseline
methods. The absolute errors (tables 2 and 3) and accumu-
lated error histograms (Fig. 9) show significant (PCK 15:
84.7 vs. 72.9 Cycle-GAN) and persistent (AUC 86.0 vs
78.4) improvements for Drosophila and the other domains.
Even bigger gains are visible for the simpler worm and ze-
brafish datasets. Although there remains a gap compared to
training on real images with manual labels for small error
thresholds, our method comes already close to the super-
vised reference method in PCK 15 and above and has a large
margin on existing unpaired image translation methods.

Ablation Study on Fly. We compared our full model at
PI-PCK-15 (84.7), to not using one of our core contribu-
tions: no deformation (64.9), only global affine (57.4), only

Ours w/o STN Vector �eld Reference*w/o deform.only STN
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Figure 11. Ablation study. All our contributions are important:
removing the global STN reduces local details (bends legs), only
global transformation misses pose differences (thinner, straight
legs), and predicting the vector field directly produces foldovers.
∗The reference silhouette is from an unpaired target image.

local non-linear (79.2), and directly encoding a vector field
(69.1). The numbers and Fig. 11 shows that all contribu-
tions are important. Also end-to-end training with DI is
important, as shown in Fig. 6, and by additional examples in
the supplemental document. Moreover, using ADDA (55.5
PI-PCK-15), did not suffice to bridge the large domain gap.

5. Limitations and Future Work
For some domains the assumption of a target segmen-

tation mask is constraining. For instance, for transfer-
ring synthetic humans to real images on cluttered back-
grounds. We plan on integrating unsupervised segmenta-
tion, as demonstrated by [3] for single-domain image gen-
eration. Although we could synthesize a variety of poses
for the worm and fish using a single stylized source im-
age, our method was not able to synthesize entirely unseen
Drosophila poses, because crossing legs could not be mod-
eled using a 2D image deformation. Moreover, symmetries
and self-similarities can lead to flipped limb identities (see
bottom of Fig. 10). We plan to use temporal cues and mul-
tiple views to find a consistent assignment in the future, fol-
lowing ideas used in [56] for humans and monkeys.

6. Conclusion
In this paper, we have presented an approach for trans-

lating synthetic images to a real domain via explicit shape
and pose deformation that consistently outperforms existing
image translation methods. Our method allows us to train
a pose estimator on synthetic images that generalize to real
ones; without requiring manual keypoint labels.

One of our test cases is on Drosophila tethered to a mi-
croscope used to measure neural activity. By combining
pose estimation with state-of-the-art microscopy, we antici-
pate more rapid advances in understanding the relationship
between animal behaviour and neural activity.
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Method

Overview of our deformation-based image translation method. Our model has two steps. In the first step, the
deformation from source domain A to target domain B is estimated for input image A and it’s silhouette A via net-
work GS and a Spatial Transformer Network (STN). Their output is an explicit deformation field parameterized by
the global, affine transformation θ and a local, non-linear warping φ, using a spatial integral layer (SIL).Then, the
deformed silhouette is transformed into the full output imageˆB with image generator GI . Discriminators DS and DI

enable unpaired training. DS uses the Straight Through Estimator (STE) for backpropagation.


