

Problem Definition

Goal: Capture the pose of real animals using synthetic training examples, without using any manual annotations. In order to support the study how neural circuits orchestrate behavior.

Key Contributions:

- An efficient model that generates both realistic appearances and accurate annotations from simple synthetic animal models.
- Explicit and independent modeling of appearance, shape and pose in an unpaired image translation framework.
- Introducing a pixel-wise deformation module that overcomes large structure difference across domains.

Method

Overview of our deformation-based image translation method. Our model has two steps. In the first step, the deformation from source domain A to target domain B is estimated for input image A and it's silhouette A via network G_S and a Spatial Transformer Network (STN). Their output is an explicit deformation field parameterized by the global, affine transformation θ and a local, non-linear warping ϕ , using a spatial integral layer (SIL). Then, the deformed silhouette is transformed into the full output image^A with image generator G_I . Discriminators D_S and D_I enable unpaired training. D_S uses the Straight Through Estimator (STE) for backpropagation.

Deformation-aware Unpaired Image Translation for Pose Estimation on Laboratory Animals

Siyuan Li¹, Semih Günel¹, Mirela Ostrek¹, Pavan Ramdya¹, Pascal Fua¹, and Helge Rhodin^{1,2} ¹École polytechnique fédérale de Lausanne ² The University of British Columbia

Related Works

Unpaired image translation

• Style Transfer based methods keep the pose unchanged fail to generate realistic appearances.

Style Transfer

• cycleGAN based methods generate realistic appearances fail to keep the pose when source and target domain have large structural differences.

Synthetic

• Our proposed method can generate realistic images together with accurate annotations.

Experiments: image translation

Dataset overview

Results main

Ta Fa

Cy G

• Samples of synthetic and real data. We focus on three animals with large discrepancy in appearance, shape and pose.

C.elegans D. rerio **Annotation transfer**

D. melanogaster

• Annotations can be transferred from source to target domain by learned deformation field.

Deformation field on source keypoints

Deformed keypoint locations

Annotated target image

• Qualitative comparison. Our methods can generate realistic images with accurate annotations in target do-

• Structured similarity (SSIM) comparison.

ısk	<i>D.M</i> .	С.Е.	D.E.
st-Style-Transfer	0.3932	0.0539	0.6385
ycle-GAN	0.6543	0.9034	0.8504
c-GAN	0.6392	0.8915	0.8586
urs	0.6746	0.9076	0.8771

Experiments: pose estimation

Qualitative results

Quantitative results • Pose estimation accuracy

• Pose estimation results for Drosophila:

	Drosophila Melanogaster					
Metric	PI-PCK ↑	PI-PCK ↑	PI-AUC ↑	$PI-RMSE \downarrow$		
	(5 pix)	(15 pix)	(4-45 pix)	(pix)		
Synthetic	19.8	67.9	75.75	13.456		
Fast-Style-Transfer	15.4	57.6	68.9	17.309		
Gc-GAN	11.9	68.7	76.3	13.175		
Cycle-GAN	15.0	72.9	78.4	12.302		
Ours	40.0	84.7	86.0	8.823		
Supervised	72.2	88.8	90.35	6.507		

• Pose estimation results for C.elegans and D. rerio:

Caenorhabditis elegans			Danio rerio		
PI-PCK↑	PI-AUC ↑	PI-RMSE↓	PCK ↑	AUC ↑	RMSE↓
(5 pix)	(2-20 pix)	(pix)	(10 pix)	(2-20 pix)	(pix)
0.0	0.9	67.29	29.3	37.4	20.15
3.1	25.0	20.50	15.6	20.8	19.25
9.7	25.0	27.38	68.2	54.5	27.38
45.3	63.2	14.71	68.7	59.1	9.70
90.3	87.6	5.36	93.9	83.1	4.50
94.6	92.3	3.77	99.6	86.5	3.91
	Caer PI-PCK ↑ (5 pix) 0.0 3.1 9.7 45.3 90.3 94.6	Caenorhabditis ePI-PCK↑PI-AUC↑(5 pix)(2-20 pix)0.00.93.125.09.725.045.363.290.387.694.692.3	Caenorhabditis elegansPI-PCK \uparrow PI-AUC \uparrow PI-RMSE \downarrow (5 pix)(2-20 pix)(pix)0.00.967.293.125.020.509.725.027.3845.363.214.71 90.387.65.36 94.692.33.77	Caenorhabditis elegansPI-PCK \uparrow PI-AUC \uparrow PI-RMSE \downarrow PCK \uparrow (5 pix)(2-20 pix)(pix)(10 pix)0.00.967.2929.33.125.020.5015.69.725.027.3868.245.363.214.7168.7 90.387.65.3693.9 94.692.33.7799.6	Caenorhabditis elegansDanio rerioPI-PCK \uparrow PI-AUC \uparrow PI-RMSE \downarrow PCK \uparrow AUC \uparrow (5 pix)(2-20 pix)(pix)(10 pix)(2-20 pix)0.00.967.2929.337.43.125.020.5015.620.89.725.027.3868.254.545.363.214.7168.759.1 90.387.65.3693.983.1

• The estimator provides close to fully-supervised results across all three animals.

Input image

Ours

Cycle GAN

Absolute error threshold (px)