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What Face and Body Shapes Can Tell Us About Height
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e 3D Pose estimation methods not do not recover the correct scales

(marked in red). Correct scales are shown in green.
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* Current datasets do have enough subject variability with known
height to generalize on height (or scale) prediction task.

Dataset H3.6M

HumanEva

MPII-INF-3DHP

IMDB-100K (Ours)

# Subjects 11

4

8

12,104

* The field needs a better dataset with more subjects with known
heights. We provide IMDB-273K dataset to the community.

Dataset Collection (IMDB)

* Identity matching using SOTA face recognition using IMDB profile
image. Matching propagates the height information, which is taken

from IMDB.
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Height: 6' 1" (1.86 m)
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Dataset

Network

Includes 12,104 subjects with known
height. This is three magnitudes larger

than current datasets!

273K images with at least a person

with known height!
Calculated pose,

identities

and

bounding boxes for 1,000,000 images.
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* Larger datasets improve the results (Figure 2).
 However, scale-depth ambiguity continues in the age of deep learning (Figures 1&3).
* Future work: combine shape and segmentation tasks into height prediction.

IMDB-100K Lab-test
Method all | women | men all
ConstantMean 825 | 746 | 9.22 11.0
GenderPred 6.61 6.28 7.12 9.26
PoseNet [20] - - - 10.65
DeepNet (ours) 6.14 | 588 | 6.40 9.13
GenderMean 591 5.63 6.23 8.66
DeepNet (gender-specific) | 5.56 | 5.23 | 6.03 8.53
(a)
Regression type
Input features Linear ShallowNet | DeepNet
Body croponly | 7.56/11.10 | 7.10/10.40 | 6.40/9.43
Face croponly | 6.49/10.25 | 6.31/9.99 | 6.25/8.87
Body and Face | 6.40/10.2 | 6.29/9.92 | 6.14/9.13
(b)
Figure 1

DeepNet evaluated on IMDB-100
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Gender-specific DeepNet evaluated on IMDB-100
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Figure 2

Comparison to Benabdelkader et al.
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Figure 3

Dataset is available upon request: semih.gunel@epfl.ch
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